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Abstract

This paper examines the role of field inhomogeneity in altering trapping strength and ion dynamics within the nominally stable region of
Paul trap mass spectrometers. The concept of escape velocity, the minimum velocity required for escape by an ion starting at the center of the
trap, has been used to numerically investigate and understand trapping strength variations reported in the literature. The governing equations
of motion, in our study, have the form of a pair of weakly coupled and nonlinear Mathieu equations with higher order terms corresponding
to hexapole and octopole superpositions. An analytical study of a single (decoupled but representative) nonlinear Mathieu equation has also
been carried out to shed light on qualitative aspects of ion dynamics near two important resonances.

The numerical study shows sharp drops in escape velocity near sgidices (3 is related to the two Mathieu parameterandg), with
the two largest drops occurring ne@ie= 2/3 and 1/2. It also shows that the hexapole nonlinearity contributes to the resongneeiB,
while the octopole nonlinearity does sofat 1/2. The analytical study indicates that at the- 2/3 resonance the ion is inherently unstable
and decreasing nonlinearity has no effect on the net reduction in trapping strength, though it does narrow the region of reduced trapping
strength. In the case of tile= 1/2 resonance, however, the phase portrait indicates only bounded solutions with “escape” occurring when the
ion encounters the geometric restriction of the trap. In particular, the reduction in trapping strength near this resonance has been interpreted
in terms of the location of a separatrix in the averaged phase space, and its relation to trap size.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction axial directions) is determined by the Mathieu parameters,
a, and g, [1], where the subscript refers to the radial
The Paul trap mass spectrometer consists of a three elecor axial co-ordinate. The mathematical stability of ions is
trode geometry mass analyzer with a central ring electrode depicted on the Mathieu stability plot which delineates re-
and two end cap electrod¢s]. The electrodes are appro- gions on they, — g, plane where both axial and radial mo-
priately shaped to produce a linear trapping field within tion are stable. The stability region is bounded by values of
the central cavity when an rf-only or rf/dc potential is ap- the parametep (related through a continuous fraction re-
plied across the ring and endcap electrodes. The motion oflation to the parameterg, andg,) having values between
ions, represented by the linear Mathieu equafi@h are 0 and 1.
uncoupled in the radial and axial directions and ions exe- In the pseudopotential well approximation proposed by
cute a secular motion whose frequency (in the radial and Dehmelt and coworkerf3,4], along thea, = 0-axis, for
small values ofy,, ions can be visualized as oscillating in
- a parabolic potential well, with trapping strength being de-
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ometry, truncation of electrodes to finite s{ag5] stretched 2. Nonlinear Mathieu equation

[6] and modified hyperbolic anglg] geometry, as well as

space charge caused by trapped if8sl1] Although the The potential distribution within a Paul trap in spher-
field inhomogeneities caused by geometric constraints con-ical coordinates assuming axial symmetry, is given by
tribute only weak higher order terms to the equation of mo- [19,20]

tion, they have dramatic effects on trap performafide

Among the many reported consequences of field inhomo- o\

geneities are localized weak spots within the nominally sta- @(p, 6, ¢) = (U + V c0s$21) {Z AN (7) PN(COSQ)j|

ble trapping region. These are regions where ions do not

experience as strong a trapping field as in other regions and (1)
here ion motion has a tendency to become unstable. Such ]

observations have resulted in the characterization of regionsWhere U and V refer to the magnitude of the dc and rf
and points where the trapping strength is low as “black potential, respectivelys2 is the frequency of the rf poten-
canyons” and “black holes,” respective]§2—15] It has tial, ro is the radius of the ring electrod®y are Legendre
been suggested by Wang et[d6] that such a phenomenon polynomials,A y are dimensionless weight factors ande-
occurs on account of nonlinear resonance when axial and ra_notes the Spherical radius coordinate of the ion. In our anal-
dial ion secular frequencies and the rf drive frequency have YSis of the nonlinear field inside the Paul trap, we consider
a simple rational relationship with each other. These prior ONly the hexapole and octopole superpositions along with
studies have identified the key resonance criteria linking the the ideal quadrupole potential. The Legendre polynomials
three frequencies of interest, as well as presented detailed©r the quadrupole, hexapole and octopole potential super-
numerical and experimental evidence to show that ion in- Positions (assuming axisymmetric imperfection) are given
stability does indeed occur at these resonant points. In thisby Beaty[19]

paper, we move the analysis further, taking a closer look at

the qualitative ion dynamics associated with instability and Quadrupole *Pa(cost) = 3 (2 —r?) (2)
ejection. 3 143 )

We will first focus on identifying the contribution of spe- Hexapole :p~Ps(cosf) = 5(2z° — 37) (3)
cific higher order terms in the trapping field in bringing
about lowered trapping strengths in different regions of the Octopole :p? P4(cosd) = 3(8z* — 24z%r% + 3r%) (4)

Mathieu stability plot. We will then investigate how these

specific field inhomogeneties alter ion dynamics and bring Substituting these Legendre polynomials irqg. (1) we
about ejection via nonlinear resonances in Paul traps. Bothget

numerical and analytical methods will be used in our study.

Two higher order superpositions, the hexapole and the oc-&(r, z, 1)

topole, will be included in the the equations of motion of Ay 2 As 3

the trapped ion in the radial and axial directions. Numeri- = (U + V cos$2r) [—2 (Zz - E) +—= (z3 - Ezrz>
cal techniques, applied to the governing equations, will pro- "o "o

file the trapping strength and highlight the role of hexapole As (4 bo 3,

and octopole field inhomogeneities in lowering the trapping +— <Z =3+ o > (5)
strength within the stability plot. The concept of escape ve- "0

locity, the minimum velocity required by the ion to escape
from the trap, will be used to understand experimentally
observed trapping strength variations in practical traps. To
further understand the dynamics during ion destabilization
we will use recent studidd7,18]which deal with the reso-

nant dynamics of a weakly nonlinear parametrically forced

equation. . . _ F=—eV,d (6)
The next section of this paper will develop the govern-

ing equations in the radial and axial directions. These equa- 54 the equation of motion of an ion of masss given by
tions have the form of coupled nonlinear Mathieu equations

with the additional quadratic and cubic terms correspond-  d2,

ing to hexapole and octopole field superpositions. Follow- m@ = —eVy® (7)

ing this, we will present the numerical and analytical tech-

nigues used in our study. Finally, we will present the re- whereu represents either the radial) (or axial ¢) coordi-
sults and discuss the role of field inhomogeneties in altering nate.

trapping strength as well as ion dynamics in practical Paul ~ Since the inhomogeneties are axisymmetric, by substitut-
traps. ing for @ in Eq. (7)we have the equation of motion of the

with Ap, A3z and A4, denoting the weight factors of the
quadrupole, hexapole and octopole terms in the trapping
potential, respectively.

The force F exerted on a particle of chargeby this
potential is given by
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ion in ther-direction as 3. Estimation of escape velocities
d2r | A2 (5 r? The concept of escape velocity has been used in dynam-
maz T —eU+ VCOSQI)& [% (Z h E) ics to quantify the strength with which a particle is trapped

in a potential wel[22]. The escape velocity provides a mea-
L A3 (13 _ §zrz> 4 Aa <z4 _ 322 §r4> sure of the kinetic energy needed by the particle of interest,
3 4 8 when starting at the center of the well, to escape to “infinity.”

I’O 2 I‘O
In the context of Paul traps, we define the escape veloc-

2 . o . i .
= — (U + Vcosg2) ity as the minimum velocity needed by an ion, situated at
"o the center of the trap, to reach the trap’s geometric bound-
ol 3_hzr N f §r3 622 ®) ary. In a time varying potential such as in Paul trgps,.for
0 2\ 2 values ofg where the pseudopotential well approximation
0

holds, the escape velocityes, may be visualized by the
whereh = Az/Az and f = As/A> denote the strength of ~ expression
the hexapole and octopole nonlinearity with respect to the % mvgscz D (13)
quadrupole term.

Substitutingz = £2t/2 into the equation of motion  \herep, the Dehemelt potentid®] is given by
(Eq. (8) we get

eV?
d2r 3 f (3 b= gmarz2 (14)
@-i-(ar—qu COS %) |:r—r—Zl'+—2 (§r3_6z2r):| =0 )
0 70 At higher values of;, however, where the pseudopotential
) well approximation fails, it may still be possible to define
an effective or equivalent potential, as has been shown by
where Sudakov[20]. However, here we have avoided such inter-
4eAoU mediate steps and directly considered the minimum kinetic
4 = _Wzrg (10) energy needed by an ion at the center of the trap to reach
the trap boundary. This minimum depends on when the ion
and starts its escape in relation to the phase of the rf poten-
26A,V tial; the associated calculation is described below. Since all
2 . .
a@r=—=> (12) computations have been performed for a fixed masshe
ms2°rg results are reported in terms of velocity rather than kinetic
energy.

Egs. (10) and (11jliffers algebraically from the expression
of a, andg, for the ideal case with the appearanceAsf

the weight factor of the quadrupole term in the numerator. In
our study,A» is set equal to 1 (although a small correction to
this value could be incorporated, as pointed out to one us by
an anonymous reviewer of another w2l ]). The equation

of motion in thez direction can be similarly derived as

As the equations of motion are of second order, to inte-
grate them numerically we need four initial conditions at
some time = ry. These initial conditions are position £)
and velocity (, z) in the r and z-directions. Since the ion
is located at the center of the trap, the initial coordinates
(r, z) are chosen to be (0). The initial 7, z are computed
from a choice of the initial velocity magnitude and its angu-
@2 lar direction in ther— plane.Egs. (9) and (12are numer-
—— + (a; — 2. COs %) ically integrated for a given initial velocity magnitude, at a
de given initial angle in the—; plane, and a given choice of

hi(a2 32\, f(,3 ~2\|_ 1o (or, phase of the forcing term). Then the initial velocity

% [Z + ro <SZ 2" ) + % (4Z er Z)} =0 (12) magnitude is iteratively adjusted so that the jost reaches

the trap boundary within a prespecified “large” time. In our
wherea, = —2a, andg, = —2g,. study, the time chosen was large enough so that further in-

Egs. (9) and (12which have the form of nonlinear Math-  crease in the time did not change the result appreciably. This
ieu equations, governs the motion of ions in practical Paul issue will be discussed further, later in the paper. This min-
traps in the radial and axial directions, respectively. The non- imum velocity was repeatedly determined for the angle in
linear and coupling terms arise as a result of the hexapole andhe r—; plane varying from 0 to2 in 12 steps and, for each
octopole superpositions in the expression for the potential of these cases, for the phase of the cosine term varying from
function. The form of the nonlinear equation derived above 0 to 27 in 16 steps. Of these 192 values the minimum is
differs from the equation used by Wang et [dl6] princi- taken as the escape velocity at the chosgng() pair in the
pally in the sign associated with some terms on account of Mathieu stability plot. In our simulations we used the fourth
our using the potential function given by Bedfyd]. order Runge—Kutta method available in MATLAB (Version
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5.3)[23]. We fixed the minimum relative tolerance as#0 ~ andB are assumed to vary slowly with time and the solution
since further decrease in the tolerance limit did not alter the is expressed as
results appreciably.

z=A(® Y Cycos(B+2n)t

4. Analytical study o
+B(D) ), Sisin(g+2n)t (17)
Egs. (9) and (12¢annot be solved in closed form. Some 00

characteristics of the motion of ions in nonlinear fields have, For those speciala,. ¢,) points such thafs is rational
h b ted i i fidd, 24,25]and theo- . SAN . o '
owever, been reported in experimer land theo Eq. (16)is periodic (with some period’). For sufficiently

retical[7] studies and our analytical study will rely on these 4 .
features to understand ion dynamics. It was seen that non-sma”g (in Eq. (15)) the averaged solutions4{z) andB(z)

) ) . re given agl
linear resonance occurred when there was a simple rationaf ¢ 9V€ a$18]

relationship between the axial, radial and rf drive frequency. , 1 T efgp d 18

For instance, the two major regions of instabil[ty2,13] - ?/0 2182 — 2281 T (18)

were seen to havg values of ¥2 and 23 implying that the

secular frequency was 1/4 and 1/3 of the rf drive frequency, an

respectively. B 1 /T fgn g (19)
In a recent study18] that focuses on analytical treatment =~ T Jy 4081 — 8182

of Eq. (12)with r = 0, it was seen that in narrow regions

in parameter space where solutions are nearly periodic, itTruncatmg the Fourier series fq. (17) we write

is possible to obtain approximate analytical expressions to 3
describe the dynamics. The equation of motion is seen as ag1 ~ Z Cy cos(B + 2n)t (20)
linear equation with a small nonlinear perturbation. It is as- n=-3

sumed that the linear unperturbed equation has two indepen- g
dent periodic solutions of peridd. Any general solution of 3
the linear equation can then be written as a weighted sum of :
these two independent solutions, the weights being constantég2 ~ Zs Snsin(p +2n)z (21)
dependent on initial conditions. In the method of approx- -
imate averaging usefl8] one assumes that the perturbed WhereC, and S, are determined by a Galerkin procedure
equation also has a similar solution, but with the previously [18]. The integral on the right hand side®ds. (18) and (19)
constant weights now becoming time dependent. The aver-needs to be evaluated to obtain the “slow flow.” A418],
aging technique helps one determine how the weights varythe integration was performed using a harmonic balance ap-
with time and thereby characterizes the solutions. For com- Proximation and the associated algebra was carried out with
pleteness, the key points of the technique are given below. the help of a commercial software package MAPRE].

Let us consider the nonlinear Mathieu equation (for axial
motion) written in the form
d?z .
az + (a; — 2q;C082)z = ¢F(z,2, 1) (15) ' ' ' .

The simulations carried out in the present paper have con-

where F is z-periodic in ther variable and represents a sidered a Paul trap with a radius of the ring electrodeds
perturbation to the linear Mathieu equation; the smallness 7 mm and distance between the endcap electrode3 62

5. Results and discussion

of the perturbation is signified by @ ¢ « 1. 10 mm. The frequency of the rf drive?, has been fixed at
The solutions of the unperturbed equation (putting O 1 MHz and the mass-to-charge of the trapped ion was taken

in Eq. (15) are special functions known as Mathieu func- to be 78 Th. In all simulations except one, the dc potential

tions[26,27] which are represented as U was set to zero. The rf voltagé—p was varied to obtain

differentq, values used in the simulations.

00 o0
= A C, COS(B + 2 B Sy sin 2n
Z Z n COS(B + 2n)T + Z nSIN(B +2n)7 5.1. Numerical simulation

n=—00 n=—00
16 _ .
(16) Figs. 1-6are plots of escape velocity versgs Except
where A and B are arbitrary constants],, and S,, are re- for Fig. 3, all plots are along thea, = 0-axis. Figs. 1-3
cursively defined constant coefficients in the Mathieu func- provide absolute values of escape velocities obtained in our
tions, andg is related to the Mathieu parametegsandg, simulations whereaBigs. 4—6plots thedifference in escape

[1]. The solution to the perturbed equation (that is, when velocity between the ideal trap and the practical trap. These
¢ # 0) can be assumed to have a similar form but nobw latter plots have been derived from plots similaFigs. 1-3
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Fig. 1. Escape velocity vsy, for 10% hexapolet 10% octopole nonlinearity (solid line). Dotted line refers to ideal case.
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Fig. 2. Escape velocity vs;, for 2% each (solid line) and 10% each (dashed line) hexapaletopole nonlinearity (solid line). Dotted line refers to
ideal case.
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Fig. 4. Difference in escape velocity from ideal trap f810% hexapole and-10% octopole nonlinearity (solid line). Dotted line refers +d10%
hexapole and-10% octopole nonlinearity.
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Fig. 5. Difference in escape velocity from ideal trap fo10% hexapole nonlinearity (solid line). Dotted line refers-tt0% hexapole nonlinearity. The
two lines appear indistinguishable in the plot.
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Fig. 6. Difference in escape velocity from ideal trap f610% octopole nonlinearity (solid line). Dotted line refers-40% octopole nonlinearity.
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For instance, the solid line Irig. 4has been derived fromthe  minimum atg, value close to 0.78, at. value close to 0.64
escape velocity values for the practical and ideal case plottedthe escape velocity curve with positive nonlinearity shows a
in Fig. 1 Consequently, although we have not provided plots sharp minimum while that for negative nonlinearity shows
showing the effect of hexapole and octopole inhomogeneity a broader minimum.

explicitly, they can be visualized from the difference plots  Fig. 5is a plot of the difference in trapping strength be-
presented irFigs. 5 and 6A value of 10% inhomogeneity  tween an ideal trap and a trap withl0% hexapole super-
has been chosen in these computations to exaggerate thposition. The escape velocity is insensitive to the sign of the
effects that were observed (realistic values of weight factors hexapole nonlinearity and consequently the behavior of the
in practical Paul traps are given [f]). negative hexapole nonlinearity is identical to the one shown

Fig. 1 presents the escape velocity vergusurve along in Fig. 5. The escape velocity in the presence of hexapole
the a, = 0 line for +10% hexapole and-10% octopole superposition is below the escape velocity for the ideal trap
superposition. The dotted line corresponds to the escape vefor all values ofg, till ¢, close to 0.9 and ion destabiliza-
locity for the linear Mathieu equation. We see that the non- tion takes place at @ value close to 0.925. There are sharp
linearity makes the magnitude of escape velocity uneven minima atg, values close to 0.5, 0.64 and 0.78. Although
alongg, with strong minima ay, values close to 0.5, 0.63 the magnitude of the escape velocity¢atvalue close to
and 0.78. The lowest escape velocity is associated gyith  0.78 is much lower than that at 0.64 (please ré&fgr 1) the
value close to 0.78 where the escape velocity appears to apescape velocitylifference with respect to the ideal trap at
proach zero. The experimental observations of “black holes” both these;, values is almost the same with the one close
in the Mathieu stability plot were first made @t = 0.78 to 0.64 being sharper than the one at 0.78.
andg, = 0.63 along theu, = 0-axis[12,13] On compar- Fig. 6 plots the difference in trapping strength between an
ing the observed trapping strength with the ideal equation ideal trap and a trap having10% octopole superposition.
we see that for low values af, (¢, < 0.45) the trapping The dotted line corresponds to negative octopole nonlinear-
strength is higher for the nonlinear equation compared to theity and the solid line corresponds to the curve for positive
linear equation except for two points closegto— 0.35 and octopole nonlinearity. For lower values gf the curve for
g, = 0.405. However, for higher values qf the trapping the positive octopole superposition shows a positive slope
strength is lower for the nonlinear equation as compared towhile that for the negative nonlinearity shows a negative
the linear equation with sharp minima at the spegjfién- slope indicating that positive octopole superposition has a
dicated above. stabilizing effect on ion motion at loy, values. Atg, val-

The overall influence of the weight of nonlinearity on ues greater than 0.5 the escape velocity for the positive oc-
escape velocity decreased with decreasing weight of nonlin-topole nonlinearity becomes lower than the escape velocity
earity except at, = 0.78. Fig. 2 presents escape velocity for negative nonlinearity and has a minimum et value
versusqg, curves for+2% hexapole and+2% octopole close to 0.6. The difference (for positive octopole nonlin-
superposition (solid line). For comparison, the curve corre- earities) is confined to a narrow rangeqfvalues ranging
sponding to4+10% hexapole and-10% octopole superpo- from 0.7 to 0.9 and goes to zero ayavalue close 0.91.
sition (dashed line) has also been included. It can be seenFor negative octopole superposition the escape velocity is
that decrease in nonlinearity increases the trapping strengthower than the ideal case and shows sharp minimg aél-
throughout they,-axis except at thg, value close to 0.78, ues close to 0.55, 0.7 and 0.87. The escape velocity curve
where the escape velocity was a minimum, remained un- shows a stabilizing effect at, values greater than 0.8 for
altered. An additional point to be noted is that although negative octopole superposition, going to zero only at a
the escape velocity is unaltered at this point, the curve hasvalue close to 0.96 at which point the ion gets destabilized

become sharper. from the trap.

Fig. 3 plots escape velocity versys for different values For nonlinear Paul traps, our simulations have reproduced
of a, on a three-dimensional plot. In these computations the experimentally observed undulatigd2—15]within the
nonlinearities were fixed ag-10% hexapole and-10% stability plot, and also reproduced the shift in the effective

octopole superposition far, values ranging fron#-0.1 to boundary of the stability region in the nonlinear Paul trap
—0.6 in steps of 0.1. It may be seen that nonzerealues [20,21] We also note that, even ideal Paul traps, the
retained the undulations in trapping strength which was seentrapping strength is not constant but instead smoothly varies
ata, = 0 above, although the magnitude of escape velocity throughout the stable region, going to zero at the nominal
reduced on either side of the = 0-axis.Fig. 3 compares stability boundaries 0B, = 0 and 1, and with a maximum
favorably with the experimental plot of Guidugli et §l4]. somewhere in the middle (e.g., along the= 0-axis the
Fig. 4plots the difference in trapping strength between an maximum occurs close @, = 0.6).
ideal trap and a trap having both hexapole and octopole non- In the context of weakly nonlinear Paul traps, our simula-
linearities, the solid line corresponding #10% hexapole  tions have additionally provided insights into the role of both
and +10% octopole nonlinearity and the dotted line corre- magnitude and sign of hexapole and octopole nonlinearities
sponding to—10% hexapole and 10% octopole nonlinear-  in ion ejection dynamics near nonlinear resonance points
ity. It can be seen that while both the curves shows a sharpwithin the stability plot. Several regions of reduced trapping
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strength have been seen in the simulations. Of these, twothe ion motion is stable. Another interesting feature is that
prominent nonlinear resonances occugavalues close to  although the motion is unstable in thelirection the points
0.64 and 0.78. Although in absolute terms these resonance®n the Poincaré section move away from the origin approx-
have widely different escape velocities, the difference of the imately along three straight lines. The ion motion at these
escape velocity from the ideal (purely linear) case is com- parameter values has a secular frequenc2(f wheres2
parable for the two resonances. Note, however, that theyis the frequency of the rf drive.
respond to changes in magnitude of nonlinearity in quali- In Fig. 8 we do a similar analysis for our second point
tatively dissimilar ways. The, = 0.64 resonance, for in-  of interest, which is ay, = 0.64 with ¢, = 0. We have
stance, becomes weaker with decrease in magnitude of nonplotted the Poincare map in this case for an initial condition
linearity while theq, = 0.78 resonance becomes sharper, of (z,r, z, 7) = (0.0025 0.0025 0, 0). It can be seen that the
though not weaker at the resonance point. ion motion grows in the direction while in ther-direction

We will next present results of an analytical study carried the motion is stable. Here, again, we see that the points in
out to understand the ion dynamics associated with non-the map in the-direction lie roughly on four lines indicating

linear resonances at these tyovalues. The analysis will  that for this motion the ion secular frequencysig4.

be motivated and guided by numerically generated Poincaré Egs. (9) and (12are forms of the nonlinear Mathieu equa-

maps, as described below. tion with the nonlinear terms being excited parametrically
by the rf drive. Based on the Poincare maps, regions close

5.2. Analytical study to g, = 0.78 and 0.64 where ion motion displayed a period-

icity of £2/3 and$2/4, respectively, will be considered be-
Poincaré maps were obtained by strobing the phase por-low. Recall that it was close to these points that the escape
trait at periodic intervals corresponding to the time period velocity displayed sharp decreases in magnitude.
of the rf drive at two specific pointgg,, ¢;) = (0,0.78) As the Poincare map showed growing soluti@amby in
and (a;, g;) = (0,0.64). In Fig. 7 we present the Poincare the z-direction we will analyze, for simplicity, only the un-
map at the(a;, ¢;) = (0,0.78) using the initial condition coupledz-equation represented as

(z,1,z,7) = (0.00038 0.00038 0, 0). We can see that the @2 3h2 4R
motion is unstable in thedirection and the amplitude of the  —— + (a; — 2¢. cos Z) (z +—+ —2> =0 (22)
solution increases with time. In contrast, in thélirection de o o
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Fig. 7. Poincare map obtained at an operating point,0f= 0 andg, = 0.78; circles show motion irx-direction and diamonds show motion in the
r-direction.
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5.2.1. lon dynamics close to the 1/3 resonance: role of
hexapole nonlinearity

The equation of motion with only hexapole component
as nonlinearity along the, = 0-axis can be obtained from

Eq. (22)as
2
E —2q,cos% | z+ 3z =0
dr? ro

(23)

In order to make the amplitude comparable to unity, we
rescalez as

== (24)
ro

whereryg is the radius of the ring electrode. Substitutibg.

(24) into Eq. (23)we get

d?z

g2~ 2:cos 2 (2 + 822) =0 (25)
where
¢ =3h (26)

As we are looking for points very close to the 1/3 reso-

nance point, we consider our trapping condition to be de- B = &(—1.387344 — 0.950M4° + 0.95525%)
tuned from the exact 1/3 resonance point, the detuning being

represented by a small detuning parametatefined as

9. =q; +¢eA (27)

whereg? corresponds to the exact valuegefwhen the solu-
tion is periodic in & ande denotes the small variation from
this value. Whiles has been defined iBg. (26)as the per-
turbation term, we introduce herg as the detuning param-
eter. This helps us study ion dynamics in the neighborhood
of the resonance. Variation of will describe the extent of
detuning ofg, from the exact resonance point. Substituting
Eqg. (27)into Eqg. (23)and rearranging the terms to bring it
to the form ofEq. (15)we get

a2z

dr?
where 0O(¢?) represents terms of orde? which are ne-
glected in our present analysis. FollowifitB], we get the
value ofg} = 0.7847. At this value of; the linear Math-
ieu equation has a frequency equak2¢3 and the detuning
parameterA will be referenced to this value af..

The slow flow equations obtained in this case [A&]

A = &(—1.9067AB + 1.3874AB) (29)

24¥7C0S 2 = £COS X(2A7 + 2¢77%) + O(¢?) (28)

(30)

IntegratingEqs. (29) and (30yives the variation of am-
plitude of the cosine and sine term with time. Numerically
integrating these equations, with different initial conditions,
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Fig. 9. Phase plot showing variation df vs. B in the slow flow for 10% hexapole nonlinearity and;avalue of 0.78.

for obtainingA and B we construct a phase portrait on the lines given byEq. (32)are marked witho. The direction of
A — B phase plane witld on thex-axis andB on they-axis. flow in the phase space is shown by arrows.
Fig. 9 shows the phase portrait obtained by numerically in- It is seen fromEq. (32) that the area of the triangle
tegratingegs. (29) and (30\ith 10% hexapole nonlinearity ~ separating the stable region from the unstable region is
and ag, value of 0.78. It can be seen that for small initial dependent on the detuning parametersince the points
conditions the ion has a stable trajectory while for large ini- of intersection are directly proportional to it. Increase in
tial conditions the ion becomes unstable and escapes fornmthe magnitude ofA increases the area of stability in the
the trap. It can also be seen that the stable and unstable rephase portrait (thereby resulting in an increase in the escape
gions can be separated by a set of three straight lines thatelocity in our numerical computations). As the detuning
intersect to form a triangle within which the ion motion is parameter reduces, the stable region in the phase portrait
stable. These are obtained[@9] reduces with the area going to zerot= 0. Therefore, at
A — 17328 — 14534 q; = q} the io_n is not stable for any givgn initial conditi.on.
For a negativel (g, < ¢7) the three points of intersection
A=-17328—-1453A (31) of the straight lines, given biq. (32)changes in sign and the
A=—-0726A A — B phase portrait will be similar to the one obtained for
the positiveA case but reflected on the= 0 line (B-axis).
Solving Eq. (31)to find the points of intersection of these | gt us next turn our attention to study the effect of change

straight lines we get of the weight of nonlinearity on the stability of the ion. As
(—1.453A, 0) the instability is dependent on the detuning parameter for
any given hexapole nonlinearity the ion will be unstable at
. (0.726A, 2167 , @2 g: = ¢ The rate at which the detuning parameter changes
(A, B) = 1732 with change ofg, from 4} is dependent on the nonlinearity
_ since
(07200, 22257, »
: AN LT (33)

The triangle formed by joining these three points in the &

phase plane demarcates the stable region from the unstable FromEg. (33)it is evident thatA changes very fast with
region. InFig. 9we have also plotted the three straight lines changingg, for small values of nonlinearity. Hence, though
given byEq. (31) The points of intersection of these three the ion is unstable at, = g for any hexapole nonlinearity,
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Fig. 10. Comparison of change of escape velocity for hexapole nonlinearity ay3heedonance for different times. Solid line represents increase in the
time by a factor of 4 as compared to dotted line.

the trapping strength increases very rapidly with any change5.2.2. lon dynamics close to the 1/3 resonance: role of

of g, from g} for a small nonlinearity as compared to a larger octopole nonlinearity

nonlinearity, resulting in much sharper resonance lines for The equation of motion with only octopole superposition
smaller nonlinearity. It may be recalled that our numerical along thea, = 0-axis can be written (fronkg. (22) as

simulations had also indicated this, showing a very sharp dip 2 43
in the escape velocity for smaller nonlinearity as compared - - 2q.C0S X (z + _3> =0 (34)
to a broad dip for higher nonlinearity with the value of the dz o
escape velocity at the minimum remaining almost the same Proceeding as before we get the slow flow as
(please refeFig. 2). Therefore, a small hexapole nonlinear- . 5 3
ity results in a sharp nonlinear resonance ejection at the 1/3A = &(2.1373A"B + 1.3873AB + 2.13758%) (35)
resonance line. As theAddB variation obtained frontgs. and
(29) and (30)is not directly dependent oa (it is related . 2 3
through the effect has onA) any change of sign of the B = e(-1.3873AA — 2.1428\B" — 2.1351) (36)
nonlinearity will result only in a change of sign df. and fromEgs. (35) and (36jve get
As an aside, let us recall thatfiig. 2, we observed that at
this 1/3 resonance point, the escape velocity had a nonzerod_A = 21375428 + 1.3873AB + 2.13756° (37)

value. However, the analysis presented here suggests that thdB  —1.3873AA — 2.1428AB? — 213543
ion should indeed be unstable at that point. In order to check For octople nonlinearity at 1/3 resonance the phase plot
this latter observation, we ran the simulation for estimating obtained byEgs. (35) and (36)Fig. 11) show a stable struc-
escape velocity for the conditions Big. 2by increasing the  ture and any instability, if present, does not appear in this
time by a factor of 4Fig. 10plots the escape velocity for this  first order analysis. However, an interesting feature of ion
conditions (in solid line) comparing it with the earlier case motion at this point can be seen on analyzifg (37) At
(dashed line). It can be seen that when the time was increasedow amplitudes the terms with dominate and the equation

by a factor of 4, the escape velocity reduced by the sameis similar to that of a circle. At higher amplitudes, the
factor. It can be seen from this comparison that the escapeterms lose importance as the cubic terms increase in mag-
velocity goes to zero as the time allowed goes to infinity.  nitude. The equation is still that of a circle but its direction
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Fig. 11. Phase portrait for octopole nonlinearity 10%;at= 0.78.

changes. At the transition from clockwise to counterclock- motion as (please sdgq. (22) along thea, = 0-axis
wise circles, there are some finer details which may not be a2z
reliable due to the approximations made in the analysis and — 4.2 —2¢77C0s % = £COS X(2A7 + 2qj23) + 0(%) (40)
which are not important from a practical point of view.

whereg? is the exact value of, at 1/4 resonance andA

5.3. lon dynamics close to the 1/4 resonance: role of corresponds to the detuning @f from this value Eqg. (27).
hexapole nonlinearity For the octopole nonlinearity, is given by

e =4h (41)

The equation of motion with only hexapole component

as nonlinearity along the, = 0-axis is given byEq. (23) Proceeding as in the previous section we obigin=
Proceeding as in the earlier cases we get the exact Iocatlorp 6393 and the slow flow equation takes the fdf8]
of the 1/4 resonance along the = 0 line atq, = 0.6393 = &(—0.0828342B + 0.98731AB + 1.469628%)  (42)
and get the slow flow as
) and
A = e0.9873A8 (38) B = (—0.98731AA + 0.082834B? — 1.469624%)  (43)
and

The effect of detuning parameter and the strength of

B = _s0.987314 (39) nonlinearitye on the equation of motion can be studied by
numerically integratind=gs. (42)and(43) for different ini-

This pair of equations represent a circle implying stable ion tial conditions. Whem is zero or positive the phase portrait

motion in the first order analysis. shows closed curves around the center of the trap. When
becomes negative the number of fixed points in the phase

5.3.1. lon dynamics close to the 1/4 resonance: role of plane increases to nine of which four are saddles; the re-

octopole nonlinearity maining five are centers, of which one is at the origin. There

We will now turn our attention to ion dynamics close tothe are also larger orbits that inscribe all nine fixed points. The
1/4 resonance with octopole nonlinearity in the trap. When A — B phase space for one such negati¥ds shown in
the type of nonlinearity is octopole we have the equation of Fig. 12, for ¢, = 0.63 and a octopole nonlinearity of 10%.
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We will now, based on the observations presented above,escape velocity is not small. A4 is decreased (0fA| is
explain the reduction in trapping strength near the 1/4 reso-increased), the scaldelg. 12grows in size. Eventually, for
nance in light of the qualitative dynamics as seehim 12 someA, the trap boundary is reached by an ion whdase
A portion of that figure is sketched ifig. 13 which shows and B value correspond to the point R Fig. 13 At this
the center at O, two saddles at M and N, two heteroclinic point, the escape velocity corresponds to the pagitOn
orbits (also separatrices) MCN and MDN; these will be dis- decreasingt slightly further, the scaleBig. 12gets slightly

cussed below. bigger, and now the ion at point Q reaches the trap bound-
FromEgs. (42) and (43)or negativeA, we can see that  ary. However, to reach point Q, the ion need not start any

Fig. 12scales in size proportionally t¢/JA]. With this in- further from the origin than point P, where we note that the

sight, let us start at a small value pA|, and slowly in- distance OP is significantly less than OS. Thus, at some spe-

crease it. Initially, the trap dimensions are large compared cific negative value ofA, the trapping strength should drop

to the scaledrig. 12 At this stage, a large initial condition  sharply, as has been seen earlier using numerics. Now, on
is needed for the ion to reach the trap geometry, and thedecreasingA slightly further, the scale&ig. 12grows big-

ger. Escape now corresponds to the trajectory reaching a dis-
tance OQ. However, the trajectory starting from P reaches
that far and beyond, and so the escape velocity continues to
correspond to distance OP. Note that, due to the increase in
size ofFig. 12 distance OP grows withA|, and so in this
range ofA we find the escape velocity increasing wijth|,

as also seen in the numerics. Eventually, the trap dimension

2 Actually, the point S represents a periodic motion of the ion. This
periodic motion crosses the trap center two or more times within each
period. At each such crossing, the ion has some velocity. The least of
these velocities is the escape velocity (the other velocities correspond to
escape starting from different phases of the forcing cycle). However, it
is easy to show that this escape velocity is in fact proportional to the
Fig. 13. Schematic of a portion dfig. 12 distance OS.
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crosses inside the separatrix MCN, and then there are sim- An anonymous reviewer suggested that our observation
ple periodic orbits encircling the origin O. In this range, the of the inherent stability (or boundedness of motions) of the
escape velocity becomes roughly constant (stops changingon in the presence of octopole nonlinearity is related to
significantly with A). Franzen et al.’$7] observation that the octopole resonance
Finally, we consider what happens if we reduce the mag- can quench itself due to shifting of secular frequencies

nitude of the nonlinear term. Now, wherbecomes smaller,  with growth in oscillation amplitude. The relation between
for the same value of physical detuning, the mathemati-  Franzen et al.’s[7] observation and ours can be seen
cal value ofA will become larger. Thus, we expect that the through ourFig. 6 which shows shifting of the minima in
width of the region of reduced trapping strength will be- escape velocity to the left or right depending on whether the
come smaller with smaller nonlinearity. This too matches octopole nonlinearity is positive or negative, respectively.
our numerical observations. Note that the amount of shift depends on the strength of the

nonlinearity as seen in our analysis; however, given a cer-

tain nonlinear field, the effective nonlinearity grows directly
6. Concluding remarks with the amplitude, which leads to the observatio @f

Through this study we have attempted to understand the
role of field inhomogeneties in altering stability of ions Acknowledgements
within the nominally stable region of the Mathieu stability
plot. The study used the concept of escape velocity to pro- Anindya Chatterjee was partially supported by ISRO and
file trapping strengths and to present comparative results ofDRDO through the Nonlinear Studies Group at 11ISc. We are
the difference in trapping strengths associated with different grateful to two anonymous reviewers for their suggestions.
nonlinear resonances. An analytical study at two “weak” re-
gions has also been carried out to understand dynamics of
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