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Abstract

This paper examines the role of field inhomogeneity in altering trapping strength and ion dynamics within the nominally stable region of
Paul trap mass spectrometers. The concept of escape velocity, the minimum velocity required for escape by an ion starting at the center of the
trap, has been used to numerically investigate and understand trapping strength variations reported in the literature. The governing equations
of motion, in our study, have the form of a pair of weakly coupled and nonlinear Mathieu equations with higher order terms corresponding
to hexapole and octopole superpositions. An analytical study of a single (decoupled but representative) nonlinear Mathieu equation has also
been carried out to shed light on qualitative aspects of ion dynamics near two important resonances.

The numerical study shows sharp drops in escape velocity near specificβ values (β is related to the two Mathieu parametersa andq), with
the two largest drops occurring nearβ = 2/3 and 1/2. It also shows that the hexapole nonlinearity contributes to the resonance atβ = 2/3,
while the octopole nonlinearity does so atβ = 1/2. The analytical study indicates that at theβ = 2/3 resonance the ion is inherently unstable
and decreasing nonlinearity has no effect on the net reduction in trapping strength, though it does narrow the region of reduced trapping
strength. In the case of theβ = 1/2 resonance, however, the phase portrait indicates only bounded solutions with “escape” occurring when the
ion encounters the geometric restriction of the trap. In particular, the reduction in trapping strength near this resonance has been interpreted
in terms of the location of a separatrix in the averaged phase space, and its relation to trap size.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The Paul trap mass spectrometer consists of a three elec-
trode geometry mass analyzer with a central ring electrode
and two end cap electrodes[1]. The electrodes are appro-
priately shaped to produce a linear trapping field within
the central cavity when an rf-only or rf/dc potential is ap-
plied across the ring and endcap electrodes. The motion of
ions, represented by the linear Mathieu equation[2], are
uncoupled in the radial and axial directions and ions exe-
cute a secular motion whose frequency (in the radial and
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axial directions) is determined by the Mathieu parameters,
au and qu [1], where the subscriptu refers to the radial
or axial co-ordinate. The mathematical stability of ions is
depicted on the Mathieu stability plot which delineates re-
gions on theau − qu plane where both axial and radial mo-
tion are stable. The stability region is bounded by values of
the parameterβ (related through a continuous fraction re-
lation to the parametersau andqu) having values between
0 and 1.

In the pseudopotential well approximation proposed by
Dehmelt and coworkers[3,4], along theau = 0-axis, for
small values ofqu, ions can be visualized as oscillating in
a parabolic potential well, with trapping strength being de-
termined by the potential at the trap boundary. In practical
Paul traps, however, weak higher order fields are known to
be superposed on the predominantly linear field on account
of both geometric and experimental constraints such as the
presence of holes in the endcaps, misalignment in trap ge-
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ometry, truncation of electrodes to finite size[1,5] stretched
[6] and modified hyperbolic angle[7] geometry, as well as
space charge caused by trapped ions[8–11]. Although the
field inhomogeneities caused by geometric constraints con-
tribute only weak higher order terms to the equation of mo-
tion, they have dramatic effects on trap performance[7].
Among the many reported consequences of field inhomo-
geneities are localized weak spots within the nominally sta-
ble trapping region. These are regions where ions do not
experience as strong a trapping field as in other regions and
here ion motion has a tendency to become unstable. Such
observations have resulted in the characterization of regions
and points where the trapping strength is low as “black
canyons” and “black holes,” respectively[12–15]. It has
been suggested by Wang et al.[16] that such a phenomenon
occurs on account of nonlinear resonance when axial and ra-
dial ion secular frequencies and the rf drive frequency have
a simple rational relationship with each other. These prior
studies have identified the key resonance criteria linking the
three frequencies of interest, as well as presented detailed
numerical and experimental evidence to show that ion in-
stability does indeed occur at these resonant points. In this
paper, we move the analysis further, taking a closer look at
the qualitative ion dynamics associated with instability and
ejection.

We will first focus on identifying the contribution of spe-
cific higher order terms in the trapping field in bringing
about lowered trapping strengths in different regions of the
Mathieu stability plot. We will then investigate how these
specific field inhomogeneties alter ion dynamics and bring
about ejection via nonlinear resonances in Paul traps. Both
numerical and analytical methods will be used in our study.
Two higher order superpositions, the hexapole and the oc-
topole, will be included in the the equations of motion of
the trapped ion in the radial and axial directions. Numeri-
cal techniques, applied to the governing equations, will pro-
file the trapping strength and highlight the role of hexapole
and octopole field inhomogeneities in lowering the trapping
strength within the stability plot. The concept of escape ve-
locity, the minimum velocity required by the ion to escape
from the trap, will be used to understand experimentally
observed trapping strength variations in practical traps. To
further understand the dynamics during ion destabilization
we will use recent studies[17,18]which deal with the reso-
nant dynamics of a weakly nonlinear parametrically forced
equation.

The next section of this paper will develop the govern-
ing equations in the radial and axial directions. These equa-
tions have the form of coupled nonlinear Mathieu equations
with the additional quadratic and cubic terms correspond-
ing to hexapole and octopole field superpositions. Follow-
ing this, we will present the numerical and analytical tech-
niques used in our study. Finally, we will present the re-
sults and discuss the role of field inhomogeneties in altering
trapping strength as well as ion dynamics in practical Paul
traps.

2. Nonlinear Mathieu equation

The potential distribution within a Paul trap in spher-
ical coordinates assuming axial symmetry, is given by
[19,20]

Φ(ρ, θ, φ) = (U + V cosΩt)

[∑
AN

(
ρ

r0

)N
PN( cosθ)

]

(1)

whereU and V refer to the magnitude of the dc and rf
potential, respectively,Ω is the frequency of the rf poten-
tial, r0 is the radius of the ring electrode,PN are Legendre
polynomials,AN are dimensionless weight factors andρ de-
notes the spherical radius coordinate of the ion. In our anal-
ysis of the nonlinear field inside the Paul trap, we consider
only the hexapole and octopole superpositions along with
the ideal quadrupole potential. The Legendre polynomials
for the quadrupole, hexapole and octopole potential super-
positions (assuming axisymmetric imperfection) are given
by Beaty[19]

Quadrupole :ρ2P2( cosθ) = 1
2(2z

2 − r2) (2)

Hexapole :ρ3P3( cosθ) = 1
2(2z

3 − 3zr2) (3)

Octopole :ρ4P4( cosθ) = 1
8(8z

4 − 24z2r2 + 3r4) (4)

Substituting these Legendre polynomials intoEq. (1) we
get
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8
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(5)

with A2, A3 and A4, denoting the weight factors of the
quadrupole, hexapole and octopole terms in the trapping
potential, respectively.

The forceFFF exerted on a particle of chargee by this
potential is given by

FFF = −e∇uΦ (6)

and the equation of motion of an ion of massm is given by

m
d2u

dt2
= −e∇uΦ (7)

whereu represents either the radial (r) or axial (z) coordi-
nate.

Since the inhomogeneties are axisymmetric, by substitut-
ing for Φ in Eq. (7)we have the equation of motion of the
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ion in ther-direction as

m
d2r

dt2
= −e(U + V cosΩt)
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whereh = A3/A2 andf = A4/A2 denote the strength of
the hexapole and octopole nonlinearity with respect to the
quadrupole term.

Substituting τ = Ωt/2 into the equation of motion
(Eq. (8)) we get

d2r

dτ2
+(ar−2qr cos 2τ)

[
r− 3h

r0
zr+ f

r2
0

(
3

2
r3−6z2r

)]
= 0

(9)

where

ar = − 4eA2U

mΩ2r2
0

(10)

and

qr = 2eA2V

mΩ2r2
0

(11)

Eqs. (10) and (11)differs algebraically from the expression
of ar andqr for the ideal case with the appearance ofA2,
the weight factor of the quadrupole term in the numerator. In
our study,A2 is set equal to 1 (although a small correction to
this value could be incorporated, as pointed out to one us by
an anonymous reviewer of another work[21]). The equation
of motion in thez direction can be similarly derived as

d2z

dτ2
+ (az − 2qz cos 2τ)

×
[
z + h

r0

(
3z2 − 3

2
r2
)

+ f

r2
0

(
4z3 − 6r2z

)]
= 0 (12)

whereaz = −2ar andqz = −2qr.
Eqs. (9) and (12), which have the form of nonlinear Math-

ieu equations, governs the motion of ions in practical Paul
traps in the radial and axial directions, respectively. The non-
linear and coupling terms arise as a result of the hexapole and
octopole superpositions in the expression for the potential
function. The form of the nonlinear equation derived above
differs from the equation used by Wang et al.[16] princi-
pally in the sign associated with some terms on account of
our using the potential function given by Beaty[19].

3. Estimation of escape velocities

The concept of escape velocity has been used in dynam-
ics to quantify the strength with which a particle is trapped
in a potential well[22]. The escape velocity provides a mea-
sure of the kinetic energy needed by the particle of interest,
when starting at the center of the well, to escape to “infinity.”
In the context of Paul traps, we define the escape veloc-
ity as the minimum velocity needed by an ion, situated at
the center of the trap, to reach the trap’s geometric bound-
ary. In a time varying potential such as in Paul traps, for
values ofq where the pseudopotential well approximation
holds, the escape velocity,vesc, may be visualized by the
expression

1
2mv2

esc= eD (13)

whereD, the Dehemelt potential[2] is given by

D = eV2

4mΩ2z2
0

(14)

At higher values ofq, however, where the pseudopotential
well approximation fails, it may still be possible to define
an effective or equivalent potential, as has been shown by
Sudakov[20]. However, here we have avoided such inter-
mediate steps and directly considered the minimum kinetic
energy needed by an ion at the center of the trap to reach
the trap boundary. This minimum depends on when the ion
starts its escape in relation to the phase of the rf poten-
tial; the associated calculation is described below. Since all
computations have been performed for a fixed mass,m, the
results are reported in terms of velocity rather than kinetic
energy.

As the equations of motion are of second order, to inte-
grate them numerically we need four initial conditions at
some timet = t0. These initial conditions are position (r, z)
and velocity (̇r, ż) in the r and z-directions. Since the ion
is located at the center of the trap, the initial coordinates
(r, z) are chosen to be (0,0). The initial ṙ, ż are computed
from a choice of the initial velocity magnitude and its angu-
lar direction in ther–z plane.Eqs. (9) and (12)are numer-
ically integrated for a given initial velocity magnitude, at a
given initial angle in ther–z plane, and a given choice of
t0 (or, phase of the forcing term). Then the initial velocity
magnitude is iteratively adjusted so that the ionjust reaches
the trap boundary within a prespecified “large” time. In our
study, the time chosen was large enough so that further in-
crease in the time did not change the result appreciably. This
issue will be discussed further, later in the paper. This min-
imum velocity was repeatedly determined for the angle in
ther–z plane varying from 0 to 2π in 12 steps and, for each
of these cases, for the phase of the cosine term varying from
0 to 2π in 16 steps. Of these 192 values the minimum is
taken as the escape velocity at the chosen (az, qz) pair in the
Mathieu stability plot. In our simulations we used the fourth
order Runge–Kutta method available in MATLAB (Version
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5.3) [23]. We fixed the minimum relative tolerance as 10−4

since further decrease in the tolerance limit did not alter the
results appreciably.

4. Analytical study

Eqs. (9) and (12)cannot be solved in closed form. Some
characteristics of the motion of ions in nonlinear fields have,
however, been reported in experimental[15,24,25]and theo-
retical[7] studies and our analytical study will rely on these
features to understand ion dynamics. It was seen that non-
linear resonance occurred when there was a simple rational
relationship between the axial, radial and rf drive frequency.
For instance, the two major regions of instability[12,13]
were seen to haveβ values of 1/2 and 2/3 implying that the
secular frequency was 1/4 and 1/3 of the rf drive frequency,
respectively.

In a recent study[18] that focuses on analytical treatment
of Eq. (12)with r = 0, it was seen that in narrow regions
in parameter space where solutions are nearly periodic, it
is possible to obtain approximate analytical expressions to
describe the dynamics. The equation of motion is seen as a
linear equation with a small nonlinear perturbation. It is as-
sumed that the linear unperturbed equation has two indepen-
dent periodic solutions of periodT . Any general solution of
the linear equation can then be written as a weighted sum of
these two independent solutions, the weights being constants
dependent on initial conditions. In the method of approx-
imate averaging used[18] one assumes that the perturbed
equation also has a similar solution, but with the previously
constant weights now becoming time dependent. The aver-
aging technique helps one determine how the weights vary
with time and thereby characterizes the solutions. For com-
pleteness, the key points of the technique are given below.

Let us consider the nonlinear Mathieu equation (for axial
motion) written in the form

d2z

dτ2
+ (az − 2qz cos 2τ)z = εF(z, ż, τ) (15)

whereF is π-periodic in theτ variable and represents a
perturbation to the linear Mathieu equation; the smallness
of the perturbation is signified by 0< ε � 1.

The solutions of the unperturbed equation (puttingε = 0
in Eq. (15)) are special functions known as Mathieu func-
tions [26,27] which are represented as

z = A

∞∑
n=−∞

Cn cos(β + 2n)τ + B

∞∑
n=−∞

Sn sin(β + 2n)τ

(16)

whereA andB are arbitrary constants,Cn andSn are re-
cursively defined constant coefficients in the Mathieu func-
tions, andβ is related to the Mathieu parametersau andqu
[1]. The solution to the perturbed equation (that is, when
ε 
= 0) can be assumed to have a similar form but nowA

andB are assumed to vary slowly with time and the solution
is expressed as

z = A(τ)

∞∑
n=−∞

Cn cos(β + 2n)τ

+B(τ)

∞∑
n=−∞

Sn sin(β + 2n)τ (17)

For those special (au, qu) points such thatβ is rational,
Eq. (16)is periodic (with some periodT ). For sufficiently
smallε (in Eq. (15)) the averaged solutions ofA(τ) andB(τ)
are given as[18]

Ȧ = 1

T

∫ T

0

εfg2

ġ1g2 − ġ2g1
dτ (18)

and

Ḃ = 1

T

∫ T

0

εfg1

ġ2g1 − ġ1g2
dτ (19)

Truncating the Fourier series inEq. (17), we write

g1 ≈
3∑

n=−3

Cn cos(β + 2n)τ (20)

and

g2 ≈
3∑

n=−3

Sn sin(β + 2n)τ (21)

whereCn andSn are determined by a Galerkin procedure
[18]. The integral on the right hand side ofEqs. (18) and (19)
needs to be evaluated to obtain the “slow flow.” As in[18],
the integration was performed using a harmonic balance ap-
proximation and the associated algebra was carried out with
the help of a commercial software package MAPLE[28].

5. Results and discussion

The simulations carried out in the present paper have con-
sidered a Paul trap with a radius of the ring electrode (r0) as
7 mm and distance between the endcap electrodes (2z0) as
10 mm. The frequency of the rf drive,Ω, has been fixed at
1 MHz and the mass-to-charge of the trapped ion was taken
to be 78 Th. In all simulations except one, the dc potential
U was set to zero. The rf voltageV0–p was varied to obtain
differentqz values used in the simulations.

5.1. Numerical simulation

Figs. 1–6are plots of escape velocity versusqz. Except
for Fig. 3, all plots are along theaz = 0-axis. Figs. 1–3
provide absolute values of escape velocities obtained in our
simulations whereasFigs. 4–6plots thedifference in escape
velocity between the ideal trap and the practical trap. These
latter plots have been derived from plots similar toFigs. 1–3.
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Fig. 1. Escape velocity vs.qz for 10% hexapole+ 10% octopole nonlinearity (solid line). Dotted line refers to ideal case.
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Fig. 2. Escape velocity vs.qz for 2% each (solid line) and 10% each (dashed line) hexapole+ octopole nonlinearity (solid line). Dotted line refers to
ideal case.
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Fig. 3. Escape velocity on theaz–qz plane for+10% hexapole and+10% octopole nonlinearity.
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Fig. 4. Difference in escape velocity from ideal trap for+10% hexapole and+10% octopole nonlinearity (solid line). Dotted line refers to−10%
hexapole and−10% octopole nonlinearity.
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Fig. 5. Difference in escape velocity from ideal trap for+10% hexapole nonlinearity (solid line). Dotted line refers to−10% hexapole nonlinearity. The
two lines appear indistinguishable in the plot.
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Fig. 6. Difference in escape velocity from ideal trap for+10% octopole nonlinearity (solid line). Dotted line refers to−10% octopole nonlinearity.



8 G.T. Abraham et al. / International Journal of Mass Spectrometry 231 (2004) 1–16

For instance, the solid line inFig. 4has been derived from the
escape velocity values for the practical and ideal case plotted
in Fig. 1. Consequently, although we have not provided plots
showing the effect of hexapole and octopole inhomogeneity
explicitly, they can be visualized from the difference plots
presented inFigs. 5 and 6. A value of 10% inhomogeneity
has been chosen in these computations to exaggerate the
effects that were observed (realistic values of weight factors
in practical Paul traps are given in[7]).

Fig. 1 presents the escape velocity versusqz curve along
the az = 0 line for +10% hexapole and+10% octopole
superposition. The dotted line corresponds to the escape ve-
locity for the linear Mathieu equation. We see that the non-
linearity makes the magnitude of escape velocity uneven
alongqz with strong minima atqz values close to 0.5, 0.63
and 0.78. The lowest escape velocity is associated withqz
value close to 0.78 where the escape velocity appears to ap-
proach zero. The experimental observations of “black holes”
in the Mathieu stability plot were first made atqz = 0.78
andqz = 0.63 along theaz = 0-axis [12,13]. On compar-
ing the observed trapping strength with the ideal equation
we see that for low values ofqz (qz � 0.45) the trapping
strength is higher for the nonlinear equation compared to the
linear equation except for two points close toqz = 0.35 and
qz = 0.405. However, for higher values ofqz the trapping
strength is lower for the nonlinear equation as compared to
the linear equation with sharp minima at the specificqz in-
dicated above.

The overall influence of the weight of nonlinearity on
escape velocity decreased with decreasing weight of nonlin-
earity except atqz = 0.78. Fig. 2 presents escape velocity
versusqz curves for +2% hexapole and+2% octopole
superposition (solid line). For comparison, the curve corre-
sponding to+10% hexapole and+10% octopole superpo-
sition (dashed line) has also been included. It can be seen
that decrease in nonlinearity increases the trapping strength
throughout theqz-axis except at theqz value close to 0.78,
where the escape velocity was a minimum, remained un-
altered. An additional point to be noted is that although
the escape velocity is unaltered at this point, the curve has
become sharper.

Fig. 3 plots escape velocity versusqz for different values
of az on a three-dimensional plot. In these computations
nonlinearities were fixed as+10% hexapole and+10%
octopole superposition foraz values ranging from+0.1 to
−0.6 in steps of 0.1. It may be seen that nonzeroaz values
retained the undulations in trapping strength which was seen
at az = 0 above, although the magnitude of escape velocity
reduced on either side of theaz = 0-axis.Fig. 3 compares
favorably with the experimental plot of Guidugli et al.[14].

Fig. 4plots the difference in trapping strength between an
ideal trap and a trap having both hexapole and octopole non-
linearities, the solid line corresponding to+10% hexapole
and+10% octopole nonlinearity and the dotted line corre-
sponding to−10% hexapole and−10% octopole nonlinear-
ity. It can be seen that while both the curves shows a sharp

minimum atqz value close to 0.78, atqz value close to 0.64
the escape velocity curve with positive nonlinearity shows a
sharp minimum while that for negative nonlinearity shows
a broader minimum.

Fig. 5 is a plot of the difference in trapping strength be-
tween an ideal trap and a trap with+10% hexapole super-
position. The escape velocity is insensitive to the sign of the
hexapole nonlinearity and consequently the behavior of the
negative hexapole nonlinearity is identical to the one shown
in Fig. 5. The escape velocity in the presence of hexapole
superposition is below the escape velocity for the ideal trap
for all values ofqz till qz close to 0.9 and ion destabiliza-
tion takes place at aqz value close to 0.925. There are sharp
minima atqz values close to 0.5, 0.64 and 0.78. Although
the magnitude of the escape velocity atqz value close to
0.78 is much lower than that at 0.64 (please referFig. 1) the
escape velocitydifference with respect to the ideal trap at
both theseqz values is almost the same with the one close
to 0.64 being sharper than the one at 0.78.

Fig. 6plots the difference in trapping strength between an
ideal trap and a trap having+10% octopole superposition.
The dotted line corresponds to negative octopole nonlinear-
ity and the solid line corresponds to the curve for positive
octopole nonlinearity. For lower values ofqz the curve for
the positive octopole superposition shows a positive slope
while that for the negative nonlinearity shows a negative
slope indicating that positive octopole superposition has a
stabilizing effect on ion motion at lowqz values. Atqz val-
ues greater than 0.5 the escape velocity for the positive oc-
topole nonlinearity becomes lower than the escape velocity
for negative nonlinearity and has a minimum atqz value
close to 0.6. The difference (for positive octopole nonlin-
earities) is confined to a narrow range ofqz values ranging
from 0.7 to 0.9 and goes to zero at aqz value close 0.91.
For negative octopole superposition the escape velocity is
lower than the ideal case and shows sharp minima atqz val-
ues close to 0.55, 0.7 and 0.87. The escape velocity curve
shows a stabilizing effect atqz values greater than 0.8 for
negative octopole superposition, going to zero only at aqz
value close to 0.96 at which point the ion gets destabilized
from the trap.

For nonlinear Paul traps, our simulations have reproduced
the experimentally observed undulations[12–15]within the
stability plot, and also reproduced the shift in the effective
boundary of the stability region in the nonlinear Paul trap
[20,21]. We also note that, even inideal Paul traps, the
trapping strength is not constant but instead smoothly varies
throughout the stable region, going to zero at the nominal
stability boundaries ofβu = 0 and 1, and with a maximum
somewhere in the middle (e.g., along theaz = 0-axis the
maximum occurs close toqz = 0.6).

In the context of weakly nonlinear Paul traps, our simula-
tions have additionally provided insights into the role of both
magnitude and sign of hexapole and octopole nonlinearities
in ion ejection dynamics near nonlinear resonance points
within the stability plot. Several regions of reduced trapping
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strength have been seen in the simulations. Of these, two
prominent nonlinear resonances occur atqz values close to
0.64 and 0.78. Although in absolute terms these resonances
have widely different escape velocities, the difference of the
escape velocity from the ideal (purely linear) case is com-
parable for the two resonances. Note, however, that they
respond to changes in magnitude of nonlinearity in quali-
tatively dissimilar ways. Theqz = 0.64 resonance, for in-
stance, becomes weaker with decrease in magnitude of non-
linearity while theqz = 0.78 resonance becomes sharper,
though not weaker at the resonance point.

We will next present results of an analytical study carried
out to understand the ion dynamics associated with non-
linear resonances at these twoqz values. The analysis will
be motivated and guided by numerically generated Poincaré
maps, as described below.

5.2. Analytical study

Poincaré maps were obtained by strobing the phase por-
trait at periodic intervals corresponding to the time period
of the rf drive at two specific points,(az, qz) = (0,0.78)
and(az, qz) = (0,0.64). In Fig. 7 we present the Poincare
map at the(az, qz) = (0,0.78) using the initial condition
(z, r, ż, ṙ) = (0.00038,0.00038,0,0). We can see that the
motion is unstable in thez direction and the amplitude of the
solution increases with time. In contrast, in ther direction
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Fig. 7. Poincare map obtained at an operating point ofaz = 0 and qz = 0.78; circles show motion inz-direction and diamonds show motion in the
r-direction.

the ion motion is stable. Another interesting feature is that
although the motion is unstable in thez-direction the points
on the Poincaré section move away from the origin approx-
imately along three straight lines. The ion motion at these
parameter values has a secular frequency ofΩ/3 whereΩ
is the frequency of the rf drive.

In Fig. 8 we do a similar analysis for our second point
of interest, which is atqz = 0.64 with az = 0. We have
plotted the Poincare map in this case for an initial condition
of (z, r, ż, ṙ) = (0.0025,0.0025,0,0). It can be seen that the
ion motion grows in thez direction while in ther-direction
the motion is stable. Here, again, we see that the points in
the map in thez-direction lie roughly on four lines indicating
that for this motion the ion secular frequency isΩ/4.

Eqs. (9) and (12)are forms of the nonlinear Mathieu equa-
tion with the nonlinear terms being excited parametrically
by the rf drive. Based on the Poincare maps, regions close
to qz = 0.78 and 0.64 where ion motion displayed a period-
icity of Ω/3 andΩ/4, respectively, will be considered be-
low. Recall that it was close to these points that the escape
velocity displayed sharp decreases in magnitude.

As the Poincare map showed growing solutionsonly in
the z-direction we will analyze, for simplicity, only the un-
coupledz-equation represented as

d2z

dτ2
+ (az − 2qz cos 2τ)

(
z + 3hz2

r0
+ 4fz3

r2
0

)
= 0 (22)
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Fig. 8. Poincare map obtained at an operating point ofaz = 0 and qz = 0.64; circles show motion inz-direction and diamonds show motion in the
r-direction.

5.2.1. Ion dynamics close to the 1/3 resonance: role of
hexapole nonlinearity

The equation of motion with only hexapole component
as nonlinearity along theaz = 0-axis can be obtained from
Eq. (22)as

d2z

dτ2
− 2qz cos 2τ

(
z + 3hz2

r0

)
= 0 (23)

In order to make the amplitude comparable to unity, we
rescalez as

z̄ = z

r0
(24)

wherer0 is the radius of the ring electrode. SubstitutingEq.
(24) into Eq. (23)we get

d2z̄

dτ2
− 2qz cos 2τ

(
z̄ + εz̄2

)
= 0 (25)

where

ε = 3h (26)

As we are looking for points very close to the 1/3 reso-
nance point, we consider our trapping condition to be de-
tuned from the exact 1/3 resonance point, the detuning being
represented by a small detuning parameter∆ defined as

qz = q∗
z + ε∆ (27)

whereq∗
z corresponds to the exact value ofqz when the solu-

tion is periodic in 3π andε denotes the small variation from
this value. Whileε has been defined inEq. (26)as the per-
turbation term, we introduce here∆ as the detuning param-
eter. This helps us study ion dynamics in the neighborhood
of the resonance. Variation of∆ will describe the extent of
detuning ofqz from the exact resonance point. Substituting
Eq. (27)into Eq. (23)and rearranging the terms to bring it
to the form ofEq. (15)we get

d2z̄

dτ2
− 2q∗

z z̄ cos 2τ = ε cos 2τ(2∆z̄ + 2q∗
z z̄

2) + O(ε2) (28)

whereO(ε2) represents terms of orderε2 which are ne-
glected in our present analysis. Following[18], we get the
value ofq∗

z = 0.7847. At this value ofqz the linear Math-
ieu equation has a frequency equal toΩ/3 and the detuning
parameter∆ will be referenced to this value ofqz.

The slow flow equations obtained in this case are[18]

Ȧ = ε(−1.9067AB + 1.3874∆B) (29)

and

Ḃ = ε(−1.3873∆A − 0.9509A2 + 0.9552B2) (30)

IntegratingEqs. (29) and (30)gives the variation of am-
plitude of the cosine and sine term with time. Numerically
integrating these equations, with different initial conditions,
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Fig. 9. Phase plot showing variation ofA vs. B in the slow flow for 10% hexapole nonlinearity and aqz value of 0.78.

for obtainingA andB we construct a phase portrait on the
A−B phase plane withA on thex-axis andB on they-axis.
Fig. 9 shows the phase portrait obtained by numerically in-
tegratingEqs. (29) and (30)with 10% hexapole nonlinearity
and aqz value of 0.78. It can be seen that for small initial
conditions the ion has a stable trajectory while for large ini-
tial conditions the ion becomes unstable and escapes form
the trap. It can also be seen that the stable and unstable re-
gions can be separated by a set of three straight lines that
intersect to form a triangle within which the ion motion is
stable. These are obtained as[29]

A = 1.732B − 1.453∆

A = −1.732B − 1.453∆

A = −0.726∆

(31)

Solving Eq. (31)to find the points of intersection of these
straight lines we get

(A,B) =




(−1.453∆,0)(
0.726∆,

2.167

1.732
∆

)
(

0.726∆,
−2.167

1.732
∆

)




(32)

The triangle formed by joining these three points in the
phase plane demarcates the stable region from the unstable
region. InFig. 9we have also plotted the three straight lines
given byEq. (31). The points of intersection of these three

lines given byEq. (32)are marked with�. The direction of
flow in the phase space is shown by arrows.

It is seen fromEq. (32) that the area of the triangle
separating the stable region from the unstable region is
dependent on the detuning parameter∆ since the points
of intersection are directly proportional to it. Increase in
the magnitude of∆ increases the area of stability in the
phase portrait (thereby resulting in an increase in the escape
velocity in our numerical computations). As the detuning
parameter reduces, the stable region in the phase portrait
reduces with the area going to zero at∆ = 0. Therefore, at
qz = q∗

z the ion is not stable for any given initial condition.
For a negative∆ (qz < q∗

z ) the three points of intersection
of the straight lines, given byEq. (32)changes in sign and the
A−B phase portrait will be similar to the one obtained for
the positive∆ case but reflected on theA = 0 line (B-axis).

Let us next turn our attention to study the effect of change
of the weight of nonlinearity on the stability of the ion. As
the instability is dependent on the detuning parameter for
any given hexapole nonlinearity the ion will be unstable at
qz = q∗

z . The rate at which the detuning parameter changes
with change ofqz from q∗

z is dependent on the nonlinearity
since

∆ = qz − q∗
z

ε
(33)

FromEq. (33)it is evident that∆ changes very fast with
changingqz for small values of nonlinearity. Hence, though
the ion is unstable atqz = q∗

z for any hexapole nonlinearity,
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Fig. 10. Comparison of change of escape velocity for hexapole nonlinearity at the 1/3 resonance for different times. Solid line represents increase in the
time by a factor of 4 as compared to dotted line.

the trapping strength increases very rapidly with any change
of qz fromq∗

z for a small nonlinearity as compared to a larger
nonlinearity, resulting in much sharper resonance lines for
smaller nonlinearity. It may be recalled that our numerical
simulations had also indicated this, showing a very sharp dip
in the escape velocity for smaller nonlinearity as compared
to a broad dip for higher nonlinearity with the value of the
escape velocity at the minimum remaining almost the same
(please referFig. 2). Therefore, a small hexapole nonlinear-
ity results in a sharp nonlinear resonance ejection at the 1/3
resonance line. As the dA/dB variation obtained fromEqs.
(29) and (30)is not directly dependent onε (it is related
through the effectε has on∆) any change of sign of the
nonlinearity will result only in a change of sign of∆.

As an aside, let us recall that inFig. 2, we observed that at
this 1/3 resonance point, the escape velocity had a nonzero
value. However, the analysis presented here suggests that the
ion should indeed be unstable at that point. In order to check
this latter observation, we ran the simulation for estimating
escape velocity for the conditions ofFig. 2by increasing the
time by a factor of 4.Fig. 10plots the escape velocity for this
conditions (in solid line) comparing it with the earlier case
(dashed line). It can be seen that when the time was increased
by a factor of 4, the escape velocity reduced by the same
factor. It can be seen from this comparison that the escape
velocity goes to zero as the time allowed goes to infinity.

5.2.2. Ion dynamics close to the 1/3 resonance: role of
octopole nonlinearity

The equation of motion with only octopole superposition
along theaz = 0-axis can be written (fromEq. (22)) as

d2z

dτ2
− 2qz cos 2τ

(
z + 4fz3

r3
0

)
= 0 (34)

Proceeding as before we get the slow flow as

Ȧ = ε(2.1375A2B + 1.3873∆B + 2.1375B3) (35)

and

Ḃ = ε(−1.3873∆A − 2.1428AB2 − 2.1350A3) (36)

and fromEqs. (35) and (36)we get

dA

dB
= 2.1375A2B + 1.3873∆B + 2.1375B3

−1.3873∆A − 2.1428AB2 − 2.1350A3
(37)

For octople nonlinearity at 1/3 resonance the phase plot
obtained byEqs. (35) and (36)(Fig. 11) show a stable struc-
ture and any instability, if present, does not appear in this
first order analysis. However, an interesting feature of ion
motion at this point can be seen on analyzingEq. (37). At
low amplitudes the terms with∆ dominate and the equation
is similar to that of a circle. At higher amplitudes, the∆
terms lose importance as the cubic terms increase in mag-
nitude. The equation is still that of a circle but its direction
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Fig. 11. Phase portrait for octopole nonlinearity 10% atqz = 0.78.

changes. At the transition from clockwise to counterclock-
wise circles, there are some finer details which may not be
reliable due to the approximations made in the analysis and
which are not important from a practical point of view.

5.3. Ion dynamics close to the 1/4 resonance: role of
hexapole nonlinearity

The equation of motion with only hexapole component
as nonlinearity along theaz = 0-axis is given byEq. (23).
Proceeding as in the earlier cases we get the exact location
of the 1/4 resonance along theaz = 0 line atqz = 0.6393
and get the slow flow as

Ȧ = ε0.9873∆B (38)

and

Ḃ = −ε0.9873∆A (39)

This pair of equations represent a circle implying stable ion
motion in the first order analysis.

5.3.1. Ion dynamics close to the 1/4 resonance: role of
octopole nonlinearity

We will now turn our attention to ion dynamics close to the
1/4 resonance with octopole nonlinearity in the trap. When
the type of nonlinearity is octopole we have the equation of

motion as (please seeEq. (22)) along theaz = 0-axis

d2z̄

dτ2
− 2q∗

z z̄ cos 2τ = ε cos 2τ(2∆z̄ + 2q∗
z z̄

3) + O(ε2) (40)

whereq∗
z is the exact value ofqz at 1/4 resonance andε∆

corresponds to the detuning ofqz from this value (Eq. (27)).
For the octopole nonlinearity,ε is given by

ε = 4h (41)

Proceeding as in the previous section we obtainq∗
z =

0.6393 and the slow flow equation takes the form[18]

Ȧ = ε(−0.082834A2B + 0.98731∆B + 1.46962B3) (42)

and

Ḃ = ε(−0.98731∆A + 0.082834AB2 − 1.46962A3) (43)

The effect of detuning parameter∆ and the strength of
nonlinearityε on the equation of motion can be studied by
numerically integratingEqs. (42)and(43) for different ini-
tial conditions. When∆ is zero or positive the phase portrait
shows closed curves around the center of the trap. When∆

becomes negative the number of fixed points in the phase
plane increases to nine of which four are saddles; the re-
maining five are centers, of which one is at the origin. There
are also larger orbits that inscribe all nine fixed points. The
A − B phase space for one such negative∆ is shown in
Fig. 12, for qz = 0.63 and a octopole nonlinearity of 10%.
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Fig. 12. Phase plot showing variation ofA vs. B in the slow flow for 10% octopole nonlinearity and aqz value of 0.63.

We will now, based on the observations presented above,
explain the reduction in trapping strength near the 1/4 reso-
nance in light of the qualitative dynamics as seen inFig. 12.
A portion of that figure is sketched inFig. 13, which shows
the center at O, two saddles at M and N, two heteroclinic
orbits (also separatrices) MCN and MDN; these will be dis-
cussed below.

FromEqs. (42) and (43), for negative∆, we can see that
Fig. 12scales in size proportionally to

√|∆|. With this in-
sight, let us start at a small value of|∆|, and slowly in-
crease it. Initially, the trap dimensions are large compared
to the scaledFig. 12. At this stage, a large initial condition
is needed for the ion to reach the trap geometry, and the

O

M

C

N

R

Q

D
S

P

Fig. 13. Schematic of a portion ofFig. 12.

escape velocity is not small. As∆ is decreased (or|∆| is
increased), the scaledFig. 12grows in size. Eventually, for
some∆, the trap boundary is reached by an ion whoseA

andB value correspond to the point R inFig. 13. At this
point, the escape velocity corresponds to the point2 S. On
decreasing∆ slightly further, the scaledFig. 12gets slightly
bigger, and now the ion at point Q reaches the trap bound-
ary. However, to reach point Q, the ion need not start any
further from the origin than point P, where we note that the
distance OP is significantly less than OS. Thus, at some spe-
cific negative value of∆, the trapping strength should drop
sharply, as has been seen earlier using numerics. Now, on
decreasing∆ slightly further, the scaledFig. 12grows big-
ger. Escape now corresponds to the trajectory reaching a dis-
tance OQ. However, the trajectory starting from P reaches
that far and beyond, and so the escape velocity continues to
correspond to distance OP. Note that, due to the increase in
size ofFig. 12, distance OP grows with|∆|, and so in this
range of∆ we find the escape velocity increasing with|∆|,
as also seen in the numerics. Eventually, the trap dimension

2 Actually, the point S represents a periodic motion of the ion. This
periodic motion crosses the trap center two or more times within each
period. At each such crossing, the ion has some velocity. The least of
these velocities is the escape velocity (the other velocities correspond to
escape starting from different phases of the forcing cycle). However, it
is easy to show that this escape velocity is in fact proportional to the
distance OS.
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crosses inside the separatrix MCN, and then there are sim-
ple periodic orbits encircling the origin O. In this range, the
escape velocity becomes roughly constant (stops changing
significantly with∆).

Finally, we consider what happens if we reduce the mag-
nitude of the nonlinear term. Now, whenε becomes smaller,
for the same value of physical detuningε∆, the mathemati-
cal value of∆ will become larger. Thus, we expect that the
width of the region of reduced trapping strength will be-
come smaller with smaller nonlinearity. This too matches
our numerical observations.

6. Concluding remarks

Through this study we have attempted to understand the
role of field inhomogeneties in altering stability of ions
within the nominally stable region of the Mathieu stability
plot. The study used the concept of escape velocity to pro-
file trapping strengths and to present comparative results of
the difference in trapping strengths associated with different
nonlinear resonances. An analytical study at two “weak” re-
gions has also been carried out to understand dynamics of
ions during destabilization.

The numerical studies to estimate escape velocities ade-
quately profiled the experimentally observed variations of
trapping strengths reported in literature and further enabled
the understanding of how magnitude and sign of nonlinearity
influences trapping strength. What was also evident was that
reducing nonlinearity does not necessarily increase escape
velocity (and hence the trapping strength) for all nonlinear
resonances as was exemplified by the influence of hexapole
superposition atβ = 2/3 resonance. It was also seen that
studies carried out at nonzero values ofau showed the influ-
ence of field inhomogeneities on trapping strength through-
out the stability plot. In principle, inclusion of terms in the
governing equation beyond those corresponding to octopole
nonlinearity, could give an insight into nonlinear resonances
which may not have appeared in our computations but which
may have been observed in experimental studies.

The novel technique of harmonic balance based averaging
used in our analytical studies helped us in distinguishing the
destabilization dynamics associated with two nonlinear res-
onances on the Mathieu stability plot. At one of those points
the analysis showed that the ion is inherentlyunstable while
at the other point the phase portrait indicated that although
the ion is intrinsicallystable, the multiplicity of centers pro-
vided an easy escape path for the trapped ion. It was also
possible to associate the influence of specific field inhomo-
geneties in bringing about ion destabilization. For two other
conditions, corresponding to 1/3 resonance and octopole
nonlinearity and 1/4 resonance and hexapole nonlinearity,
our current analysis did not show any inherent instability
though the numerical analysis suggested a decreased trap-
ping strength for at least one of these cases. We suspect that
this could be a limitation of the first order analysis used here.

An anonymous reviewer suggested that our observation
of the inherent stability (or boundedness of motions) of the
ion in the presence of octopole nonlinearity is related to
Franzen et al.’s[7] observation that the octopole resonance
can quench itself due to shifting of secular frequencies
with growth in oscillation amplitude. The relation between
Franzen et al.’s[7] observation and ours can be seen
through ourFig. 6 which shows shifting of the minima in
escape velocity to the left or right depending on whether the
octopole nonlinearity is positive or negative, respectively.
Note that the amount of shift depends on the strength of the
nonlinearity as seen in our analysis; however, given a cer-
tain nonlinear field, the effective nonlinearity grows directly
with the amplitude, which leads to the observation of[7].
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